Remarks on nonlinear Schrödinger equations with harmonic potential
نویسنده
چکیده
Bose-Einstein condensation is usually modeled by nonlinear Schrödinger equations with harmonic potential. We study the Cauchy problem for these equations. We show that the local problem can be treated as in the case with no potential. For the global problem, we establish an evolution law, which is the analogue of the pseudo-conformal conservation law for the nonlinear Schrödinger equation. With this evolution law, we give wave collapse criteria, as well as an upper bound for the blow up time. Taking the physical scales into account, we finally give a lower bound for the blow up time.
منابع مشابه
Remarks on the nonlinear Schrödinger equation with harmonic potential
Bose-Einstein condensation is usually modeled by nonlinear Schrödinger equations with harmonic potential. We study the Cauchy problem for these equations. We show that the local problem can be treated as in the case with no potential. For the global problem, we establish an evolution law, which is the analogue of the pseudo-conformal conservation law for the nonlinear Schrödinger equation. With...
متن کاملRemarks on the Schrödinger Equation
Various origins of linear and nonlinear Schrödinger equations are discussed in connection with diffusion, hydrodynamics, and fractal structure. The treatment is mainly expository, emphasizing the quantum potential, with a few new observations.
متن کاملCritical Nonlinear Schrödinger Equations with and without Harmonic Potential
Abstract. We exhibit a change of variables that turns the critical nonlinear Schrödinger equation into the critical nonlinear Schrödinger equation with isotropic harmonic potential, in any space dimension. This change of variables is isometric on L, and bijective on some time intervals. Using the known results for the critical nonlinear Schrödinger equation, this provides information for the pr...
متن کاملChanging blow-up time in nonlinear Schrödinger equations
Abstract Solutions to nonlinear Schrödinger equations may blow up in finite time. We study the influence of the introduction of a potential on this phenomenon. For a linear potential (Stark effect), the blow-up time remains unchanged, but the location of the collapse is altered. The main part of our study concerns isotropic quadratic potentials. We show that the usual (confining) harmonic poten...
متن کاملRemarks on Global Existence and Blowup for Damped Nonlinear Schrödinger Equations
We consider the Cauchy problem for the damped nonlinear Schrödinger equations, and prove some blowup and global existence results which depend on the size of the damping coefficient. We also discuss the L concentration phenomenon of blowup solutions in the critical case.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001